新足迹

 找回密码
 注册

精华好帖回顾

· 一封感谢信 (2007-8-30) amon54 · 回国GIFT IDEA征集 - 顶楼总结,不断更新中 (2005-6-24) leeshine
· 【过年】秀一下一家三口2015年夜饭并祝大家羊年大吉 (2015-2-20) philjoy · 是时候聊一下墨尔本的房地产了 (2024-11-3) 逆风而上
Advertisement
Advertisement
查看: 3987|回复: 7

[VIC] 请教高手!有两道数学竞赛的题目求做法!谢谢! [复制链接]

发表于 2017-3-20 08:36 |显示全部楼层
此文章由 bill-bill 原创或转贴,不代表本站立场和观点,版权归 oursteps.com.au 和作者 bill-bill 所有!转贴必须注明作者、出处和本声明,并保持内容完整
1.what is the smallest positive integer that can be expressed as the sum of nine consecutive integers, the sum of ten consecutive  integers and the sum of eleven consecutive integers?
2.three different non-zero digits are used to form six different 3-digit numbers, the sum of five of them is 3231.what is the sixth number?
Advertisement
Advertisement

发表于 2017-3-20 09:44 |显示全部楼层
此文章由 scott.songgps 原创或转贴,不代表本站立场和观点,版权归 oursteps.com.au 和作者 scott.songgps 所有!转贴必须注明作者、出处和本声明,并保持内容完整

发表于 2017-3-20 09:46 |显示全部楼层
此文章由 scott.songgps 原创或转贴,不代表本站立场和观点,版权归 oursteps.com.au 和作者 scott.songgps 所有!转贴必须注明作者、出处和本声明,并保持内容完整
本帖最后由 scott.songgps 于 2017-3-20 10:50 编辑


< 31 sum of six digits < 39

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有帐号?注册

x

发表于 2017-3-20 10:01 |显示全部楼层
此文章由 jga000 原创或转贴,不代表本站立场和观点,版权归 oursteps.com.au 和作者 jga000 所有!转贴必须注明作者、出处和本声明,并保持内容完整
本帖最后由 jga000 于 2017-3-20 11:24 编辑

1.what is the smallest positive integer that can be expressed as the sum of nine consecutive integers, the sum of ten consecutive  integers and the sum of eleven consecutive integers?


I didn't read the question carefully, sorry about the error.
the correct one should be 9a=10b+5=11c
where a is the middle of the 9 numbers and b is the 5th number of the 10 numbers, c is the middle of the 11 numbers.
thus this number should be a common multiple of 11, 9, 5,so it is 5*9*11=495


2.three different non-zero digits are used to form six different 3-digit numbers, the sum of five of them is 3231.what is the sixth number?

let the three digits be a, b, c, then the sum of six numbers is 200*(a+b+c)+20*(a+b+c)+2*(a+b+c)=222*(a+b+c)
222*(a+b+c)=3231+the 6th number.
we know the 6th number is between 100 to 1000, so the a+b+c is between 15 and 19,
1)a+b+c=15, the 6th number is 99, can't be
2) a+b+c=16, the 6th number is 321, but the sum of the 3 digits is not 16, so can't be
3) a+b+c=17, the 6th number is 543, the sum of the 3 digits is 12, not equal to 17, can't be
4) a+b+c=18, the 6th number is 765, the sum of the 3 digits is 18
5)a+b+c=19,the 6th number is 987, the sum of the 3 digits is not 19
so the 6th number is 765

评分

参与人数 1积分 +4 收起 理由
doufudoufu + 4 你太有才了

查看全部评分

发表于 2017-3-20 10:18 |显示全部楼层
此文章由 monica612 原创或转贴,不代表本站立场和观点,版权归 oursteps.com.au 和作者 monica612 所有!转贴必须注明作者、出处和本声明,并保持内容完整
本帖最后由 monica612 于 2017-3-20 11:19 编辑

Q1, the answer is 495. It is a number which is a multiple of 9, 5, and 11
9a_5=11(b_5+b_6)=11C_6

sum from 51 to 59
from 45 to 54
from 40 to 50
生命只是两个无限死亡中的一瞬间。

发表于 2017-3-20 10:27 |显示全部楼层
此文章由 bill-bill 原创或转贴,不代表本站立场和观点,版权归 oursteps.com.au 和作者 bill-bill 所有!转贴必须注明作者、出处和本声明,并保持内容完整
真是高人!辛苦了!非常感谢帮忙!
Advertisement
Advertisement

发表于 2017-3-20 11:22 |显示全部楼层
此文章由 zhengyiqun08 原创或转贴,不代表本站立场和观点,版权归 oursteps.com.au 和作者 zhengyiqun08 所有!转贴必须注明作者、出处和本声明,并保持内容完整
第一题可以列方程为:
x + x + 1 + ... + x + 8 = y + y + 1 + ... + y + 9 = z + z + 1 + ... + z + 10

然后推导出:
9x + 36 = 10y + 45 = 11z + 55

得:
x = 10/9 y + 1
y = 11/10 z + 1

即可得z为10得倍数而y为9的倍数。

所以最小的符合值为:z = 40, y = 45, x = 51。

则第一题的解为:495

发表于 2017-3-20 11:30 |显示全部楼层
此文章由 zhengyiqun08 原创或转贴,不代表本站立场和观点,版权归 oursteps.com.au 和作者 zhengyiqun08 所有!转贴必须注明作者、出处和本声明,并保持内容完整
第二题可以建模为:

设三个非零整数位x, y, z,则所有的六个数为:
100x + 10y + z
100x + 10z + y
100y + 10x + z
100y + 10z + x
100z + 10x + y
100z + 10y + x

则可以列方程:
222 (x + y + z) = 3231 + m
m = 100i + 10j + k    {i, j, k 为x ,y, z的某种组合}

最终试得的结果为:
222 * (7 + 6 + 5) - 3231 = 765

即m = 765

发表回复

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Advertisement
Advertisement
返回顶部